“AD=AQ42 264 DOTY ASSQCIATES INC ROCKVILLE MD F/G 9/2
SOFTWARE COST ESTIMATION STUDY. VOLUME 1. STUDY RESULTS, (U)
JUN 77 J H HERD» J N POSTAK, W F RUSSELL F30602=76-C= 0182
UNCLASSIFIED TR=151 RADC=TR=77=220=VOL=1

e —

ADAO42264

BOC rie COPY

AD 1.

RADC-TR~77-220, Volume I (of two)
Final Technical Report
June 1977

SOFTWARE COST ESTIMATION STUDY
Study Results

Doty Associates, Inc.

<
)

/_,/,
R

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344)

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and is approved for publication.

APPROVED: (:u'm\ N, X«&Q&a’

ALAN N. SUKERT, Captain, USAF
Project Engineer

APPROVED: o e 4
ALAN R. BARNUM

Assistant Chief
Information Sciences Division

' =2
FOR THE COMMANDER: &g"’/")/ ' A%d,

JOHN P. HUSS
Acting Chief, Plans Office

Do not return this copy. Retain or destroy. "

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (DAP) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

|
,;
|
;
i
|
|

UNCLASSIFIED
i SECURITY CLASSIFICATION OF THIS PAGE (When Dn(u‘fnlered)_
/ STRUCTIONS
/. REPORT DOCUMENTATION PAGE BEFORE COMPLETING EORM
i ' ¢ 1. REPORT NUMBER . |2. GOVT ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER
RADC{TR-77-220,. Volume 1 (ot two) | .
4. TITLE (and Subtitle) . s BT & PERIOD COVERED
~ o e e 74 Final Technical Repest . ﬂ {
4', SOFTWARE COST ESTIMATION STUDY, \/ i 2 deaY” V23 Feb 76 = 23 Feb 7/, 4
Study Results / 6 PERFORMING 03G. REPORT NUMBER
R e e Technical Report #151 -
: T Auruomu7 . 8. CONTRACT OR GRANT NUMBER(s)
; f James H. /Herd, John N. ’Postak — o P s i
William Ev‘Russell Kenneth R./ Stewart / _|F30602-76-C-0182 '/ ‘o '
g ; 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 ::gE%AonRLKEMs:‘TTNPUmOBJEECJ TASK |
; Doty Associates, Inc. ~— 62702F - |
416 Hungerford Drive ¢/ = / /(14 /55811404 / :
i Rockville M 20850 = / e T s
‘ 11. CONTROLLING ORFICE NAME AND ADDRESS 12, REPQRT DATE
3 Rome Air Development Center (ISIS) |June ¥77 .]
Griffiss AFB NY 13441 13. NUMBER OF PAGES |
] 202 |
! 14. MONITQRING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report) 1:
N o NE— |
Same { /S 2T UNCLASSIFIED ;
-7/ pr . 15a DECLASSIFICATION DOWNGRADING |
/ / sC ULE
———] N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

4 R A N\
! {
O T . W X‘
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different frem Report) O) \ .\
=
Same -

K 18. SUPPLEMENTARY NOTES
RADC Project Engineer: (:,
3 Captain Alan N. Sukert (ISIS)

19. KEY WORDS (Co..tinue on teverse side if necessary and identify by block number)

Software Cost Estimates Software Development Costs
Business Software Costs Software Development Time
Command and Control Software Costs Software Size

Cost Analysis Utility/Support Software Costs

Scientific Program Software Costs

0. ABSTRACT (Continue on reverse side If necessary and identify by block number)

[~ The study identified factors that have an adverse effect on software cost

] estimates, determined their impact on software cost estimates, discussed methods
d for controlling the effect of these factors, and developed an overall method-
ology for estimating the costs of software development. In addition to a
generalized model for estimating software development costs, separate models
have been generated for estimating the development cost of command and control,
scientific, utility, and business software,

i R

DD ':2:"73 1473 EODITION OF 1 NOV 65 15 OBSOLETE UNCLASSIFTED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Fnuud)',]

/ / f L G
-y ” [

A A T e e A SR S BBV 5 (0 i i e

i

i

o

!

i o

2 UNCLASSIFIED
3 SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)
b

H

i

3

g i < s NN SN AN TN i o

e e <

3
f 1
7
E
i ;

UNCLASSTFIED

SECURITY CLASSIFICATION OF Tv " PAGE When Data Entered)

PREFACE 3

5 B o Wi AP a2 b b,

This final report entitled "Software Cost Estimation Study, Volume
: I: Study Results," was prepared by Doty Associates, Inc. (DAI), for

the Information Systems Division (ISIS), Rome Air Development Center

(RADC), Griffiss Air Force Base, New York 13441. 1Inclusive dates of
research were from 23 February 1976 through 22 February 1977. Sub-
mittal date was 23 March 1977. This technical effort was accomplished
1 under Contract number F30602-76-C-0182. The Air Force Project Manager
for this project was Captain Alan N. Sukert, USAF of RADC.

iid

gLy o s bl e i i it i e

e P K3 S I e WA o uion ™ o i 4 e SN S s A i M L) ol i

o i - " (o g o

Paragraph

B W W w
& »

w W W
.

(S oY)

B e e - T T T S S R S =
wWwwwwwwwowwwww!r
.

HHEHFOODIDONS W

Gl 20 P et ol b S i 500 0 A s T iy, e ¥

. CONTENTS

113) @]) 0 (el S (@) BRI e S E e e D S

)2 e ehgba L8 L S s A T e e R
Study abjectives! on LR RS w s s e
Suminaasy o E eSS s e
Organization of the report . . &+ ¢ = & = =

S BN R R A e sl o e e e

Task 1. Identification of Factors Affecting

Rstimates it U s s Lot S e e
Ppatal cqllection L vt o d L e et L e
Ratalanalys s il T

Task 2. Examination of Techniques for Con-
trolling Effects . Lo 0w s e e .
Task 3. Development of an Approach for
Software Cost Estimation
FACTORS AFFECTING THE RELIABILITY OF
SOFTWARE SIZE AND COST ESTIMATIONS . .
Phesidataly ikl PR IRE et ol Sare s, S ot ST e
Thelanalysisel e e SN iy L a e e e
Theresul bl i i it s el oo o s Ll s
Purchaser «domain’ factors . . « . & - - = .
Developer domain factors--preparation
PEOCEH IS ST e s o s e

Developer domain--project management procedures

Developer domain--determining actual costs
Other factors--type of application
TECHNIQUES FOR IMPROVING RELIARILITY OF
SOFTWARE COST- ESTIMATION . /v « v = o
Criteria for selection of techniques . . .
Employment of techniques
Control of the primary factors
Special displays . ¢ o v e = W e s s ow e s
Data management « ¢ « o ¢ o % @ W woe & & a
Definition of operational requirements . .

Chanages in operational reguirements
Intertade £o deBiON & v v « &« e s % w s b
Response time requirements
Time (hardware) cofistraint . ¢ o « « « & »

Memory (hardware) constraint
Time and memory (hardware) constraint . . .
First development on computer
Concurrent development of hardware
Time CPU specified in schedule (hardware

CORSELIIANY oo 5d e ¢ s w e
Reguirement for innovation . . ¢ « & « = =
Language requirements ¢ « ¢ o o

iv

£

PR by

1L

12

14
14
157
211
2

53
68
76
80

84
84
84
86
87
87
88
88
89
90
91
92
93
93
93

94
94
94

T

Page

Paragraph 4.3.15 Ouality FEQUITEMENES o o 4 il e wiiie e e e e 2 95

v

4.3.16 Reliability mequirements = 2 o o o' @ o« s oo = 98
4.3.17 Testing requirements (including verification
and s validation) i E iRt LR L s . s R 00 !

.

Transportability requirements 100 §
Maintenance requirements . ¢ . « = s 5 2 5 « = s 101
Development Schedulel s L . 0 o % olis s & o e e 101
Commumicationst s Suae e s e G s e e o s 10T
Developer using another activity's computer . . . 102
Programmer access to computer « . & = .o » 102 5
Operational site development 103
Development and target computer different 103
Number of development locations 104
Programming enVIrenment . & weaialcs ol e e . o X205
SHppert SO E EWware i e e e et e e e e 06
Programmingifacsliciies IR e L Do ot s o Ll 106
Multiple software utilization sites 107
End wuseriregquirementss oo nhciolly ol w ek e e 207
DeSion ‘comalietite sdinti e o Sl L S e BT
DesignustabiiltaEy L e i e Lo st wl e ee 208
Modern programming techniques 108
Sizing estimate Error V. o sis e e aese s e s e w109
Defimitionl e instructionsa i s S s s o e - 110
Pergsonnel mix DY EYRERG 0 als ta o aow w il e e s 120
Work Breakdown Structure (WES) . « « & » « & « » 111
Cost/Schedule Control Systems Criteria

e s e o R T G B i
.3.40 Amount and method of cost data collection ., . . . 112
34l Secondatyi FeSONECEs L im0 Sl s e s e A3
.3.42 Softwdre applications s o i o n sk e e e s e 1138
I METHODOLOGY FOR ESTIMATING SOFTWARE
i PEVELOPMENT S COSTS T e s = e & o e 16
Development of the estimating algorithms 117

B . .
. .

.
wr A 8

.
W W WM NN NN NN

.
wWwwwwwwwwwwowwwwwwwwwww
e . . N P

w
NOUTE W HFOWOJOWMd WO WU

B S I S S S S S S S e S S S L. .~ T = T S S S =N
@®

o+
w W W W w
Ve]

(B2 S =N

I | Time required for development 117
| «2 Cgost estimating algoXithms . w v w w0 o+ & & = = 418
; .3 Software sizing R e A W e A S 0]
[.4 Secondary XeSOUYCeS & o « = 4% e % v 5w 5w s ALTD

Proposed methodology and existing directives . . 175
Study: reSULEs. s s 5 e v e e T s o s W a LYB
Recommendations o v s oo s o ow s we s w6 e e 483

(5,000, T, G, IS IS, BC, T
v e s
B W N e e

Appendix A - Quantitative Data Bases Obtained from literature . . . A-1

Bibliography L e R L O o o ¢ - 2 1 o) e Lo o

FIGURE 1.
2

11.

13.

14.
154
16.
17,
18.

19
20.

ks

FIGURES

Source code data for total population.
Source code data for total population
CESHOOOOT ot o el e R e e
Effect of time and memory constraints on
sofftware productivity. oL 0 o LD u e .
Software reliability economic considerations .
Software development time estimator.
Estimated distribution of resources for a
medium-large project (v100,000 object
IRNSErucEIons). b S e e
Hardware/Software cost trends.
Anticipated shape of estimator for optimal
duration of software development
Baseline relationships for software programs .
Relationship between program size in source
code and development manpower for total
2703 2101 lec e (o] s (P SR AR et A Sl i s Qe T B o S
Relationship between program size in source
code and development manpower for total
pobulation (E<19,000) 0 L ane ol o e & -
Relationship between program size in object
code and development manpower for total
populationt Sel e e e oEGR TR ST S e R
Relationship between program size in object
code and development manpower for total
population: (F<LOHOQDY TS s ate e nli e«
Comparison of actual and estimated development
manpower for total population.
Manpower estimation model for software
Command and control program source code data .
Command and control program source code data
(3822 Mo gl nln ah A SR e SR P s Rl SR
Baseline manpower relationships for command
and control Programe o a Wi L R R e
Relationship between program size in source
code and development manpower for command
and CORtrol Programs - « & o & % & = A 5 vas e
Relationship between program size in source
code and development manpower for command
and control programs (I<10,000). « « « ¢ o «
Relationship between program size in object
code and development manpower for command
and control Programs « ¢ « v & s & v w ¥ w5 e

A ot R R s L i, AT S LR Wl R i s

20
32

40
44

46

69

119

124

125

126

127

128

130
131
132

L35
136
L3

138

FIGURE 22.

23

24.

25

26.

270

28.

29.

30

31

323

33,
34,
35
36.
37
38.

39,

40.

FIGURES

Relationship between program size in object
. code and development manpower for command
and control programs (I<10,000).
Comparison of actual and estimated development
manpower for command and control software
4o S P e N e it 0 A P il Sl O
Manpower estimation model for command and
cOntrol saftwarel < s o S e e e e
Comparison of actual and estimated development
manpower for command and control software
programs (multivariate model).
Scientific program source code data.
Scientific program source code data (I<10,000)
Baseline manpower relationships for scientific

ProgramS uite @ = e o sk e e e e o s

R¢ ship between program in source code and

er for scientific programs
hip between program in source code
mpower for scientific programs
R 010 [0S Ml S GG D e o O e
Relationship between program in object
code and development manpower for scientific
PEOUEANS! o s ol & 55 5 e e e v % el v s e A
Relationship between program size in object
code and development manpower for scientific
proegrams (I<10,080) o = o & & s & = « = & =
Comparison of actual and estimated development
manpower for scientific software programs. .
Manpower estimation model for scientific
SOEEWALE o v o 4k o e e e W e @ e e el w
Business program source code data.
Business program source code data (I<10,000) .
Baseline manpower relationships for business
BEOQLAME! o o &, e ool w0 1w G e el i et
Relationship between program size in source
code and manpower for business programs. . .
Relationship between program size in source
code and manpower for business programs
(B<EU,000) 5 = o s e % W v we o wleie e s
Relationship between program size in object
code and development manpower fdr business
PEOUEAMSE o\ % » & wow wow W e m e e e

vii

139

140
141
142
143
144

145

147
148
149

150
151
152
153
154
156

157
158

159

FIGURES
I
- Page %
FIGURE 41. Relationship between program size in object

code and development manpower for business
grograns: (T<X0;000) . o « 5 & s 5iis o we s 160

e
42, Comparison of actual and estimated development ?
manpower for business software programs . . . lol E
43. Manpower estimation model for business 1
SOTEWame T ol o e A o R e e s 162 fi
44, Utility program scurxce code data. .« o » o <« <« o 163
45. Baseline manpower relationships for utility
DYOGEAMS © o o7 5w 6w e e el m, e e s 164 ' .
46. Relationship between program size in source §
code and development manpower for utility !
PEOGERIS, & ik o %k 15w il et iy 6 e el e e loo
47. Relationship between program size in object
code and development manpower for utility
PEOGESMB. o o v $ius e e G S sl e e 167
48. Comparison of actual and estimated development
manpower for utility software programs. . . . 168
49. Manpower estimation model for utility software. 169
50. Suggested utilization of estimating relation-
ships for development manpower . « + . « o« . 181
viif ‘
~" 7' . . - ; " . . e
Sttt oy o b & » X o = A i oy 0 g
PREVTENG. TN e IS el R Mok S e i D N T = ~ ¥ L s R e T s e L —(“
B - - s e ot ? o ahiaid 2 Lai -

TABLE

FACTORS ANALYZED FOR EFFECTS . « « « « « o+ «
PURCHASER' DOMARNIRE Ao GRSl s oo 0
DEVELOPER DOMAIN PREPARATION PRCCFDURES.
ACCURACY OF SIZING PARAMETER . « « & . « « . =
DEVELOPER DOMAIN PROJECT MANAGEMENT PROCEDURES
DEVELOPER DOMAIN TETERMINING ACTUAL COSTS.
PYBRN OE) AEDHTCATIONA . e et s i e ok
FACTORS AFFECTING COST ESTIMATION ACCURACY FOR

WHICH CONTROLS ARE PROPOSED. . . <« « & & o« «-

STRUCEURE OF THE DATA SAMPLE . . o & « =« ¢ « =
IMPACT OF FACTORS DN SOFTWARE COST ESTIMATION.

ix

15
22
54
61
70
78
81

85
122
178

BB P e

TNET——

jpic L4 A

ALAN N. SUKERT, Captain, USAF

EVALUATION

lhe increased importance of software for military applications,
coupled with the increased expenditures by both the military and
civilian communities for the development of software, has brought about
an increased awareness of the present high cost of software and the
consistent inability to accurately predict the cost of software projects.
his need for producing lower cost software and for more accurately
estimating software costs has been expressed in such documents as the
Findings and Recommendations of the Joint Logistics Commanders Software
Reliability Work Group (November 1975) and the Summary Notes of a
Government /Industry Software Sizing and Costing Workshop (November 1974)
(ESD-TR-76-166), as well as in numerous Government and industry sponsored
symposia. As a result, several efforts have been initiated to develop
better methods for estimating software costs. However, these efforts
have not adequately considered the basic underlying factors that affect
software sizing and cost estimates, and have not, in most cases, considered
non-linear software cost estimating relationships.

lhis eftort was initiated in response to the need to better understand
and control those factors that adversely affect software sizing and cost
estimates, and fits into the goals of RADC TPO No. 5, Software Cost
Reduction (formerly RADC TPO No. 11, Software Sciences Technology), in
particular the area of Software Quality (Modeling). The report concentrates
on the identification of over forty factors that are shown to have an
adverse impact on the accuracy of software sizing and cost estimates,
and the formulation of methods for minimizing the effects of these adverse
factors, in both the software developer and purchaser domains. The
importance of being able to identify and minimize these adverse factors is
that it will enable software cost analysts, as well as software managers, to
more accurately predict the cgsts of software projects, by recognizing
those factors that have to be considered when making software cost estimates
during the various phases of thé software development cyvcle. This, in turn,
will enable software managers to better control the costs of software projects
and thus greatly reduce the potential for severe cost overruns that presently
exists. Finally, the overall methodology proposed in this report will 5
provide methods that future software cost estimators can use to obtain accurate
cost estimates during each phase of a software development project, which will
greatly aid in the preparation of independent software cost estimates for use
in project evaluation. 1

Q). LN

Project Engineer

S b -

1. INTRODUCTION

34 Background

Since the advent of modern computers, it has been common for the
cost and time required to develop software, particularly for large
programs, to exceed initial estimates. In addition, the increased so-
phistication of software applications over the past ten years has made
these erroneous estimates more significant in terms of absolute costs
and the percent impact on total system cost. The erroneous estimates
can be caused by any one or a combination of numerous factors. Among
the most critical factors are changes in the operational requirements,
which affect the functional specifications of the software. However,.
even when the specifications have been fixed, it has been difficult to
project the resource requirements accurately. The primary resource--
manpower--varies widely in productivity and quality and is affected
in a complex manner by the multi-dimensional environment in which the
software is developed. Secondary resources such as machine time and
publications support are fregquently unavailable at appropriate times.
In addition, information with which to develop estimates of resource
requirements, such as program size, program language, and type computer
are not always available on a timely basis. And, if these items are
defined, the system can be aggregates of so many elements, organizational
interactions,'logistical considerations, etc., that it is difficult to

assess the scope of the work accurately.

Essentially, the field of software management and engineering is
still in its infancy, especially as it relates to deriving cost esti-
mates of software development. The field has evolved tc the state where
the cost of a software package is generally developed by estimating the

number of instructions to be delivered with the package (i.e., size),

and multiplying the size by a cost factor based on average personnel

productivity. The Air Force, other DoD and government agencies, and

commercial organizations have found this method to be inadeqguate. This

simplistic approach has resulted in large cost overruns in several soft-

ware development projects. Size est.mates have been observed to be

erroneous in many cases by and it is common to

a factor exceeding 3,

have a productivity factor that has a standard deviation 2.5 times the

expected value. With such

large variances associated with the two fac-

tors most commonly used in software cost estimation, it is not surpris-

ing that large software cost overruns occur. Of the two factors, size

is the most important since a misestimation in this parameter can have

an impact on hardware as well as software costs.

With a long history of cost overruns, program managers often wonder

why software development costs cannot be predicted as accurately as the

costs of engineering tasks. During the past several years, extensive

work has been performed in the development of improved techniques and
! guides for the prediction of software costs. However, the procedures
or models evolving from these studies have unfortunately been demonstrated

to be inaccurate estimators--usually for the reasons discussed previous-

ly-—-erroneous estimation of the size of the software packages and/or

of programmer productivity. Major software development contractors

have been sensitive to the need for improved techniques of cost estima-
tion because of pressures exerted by customers who have experienced or
are projecting serious cost overruns. As of late, the techniques offered
by the developers usually have involved improved "software management"

which has had a relatively minor impact on the resultant discrepancies

) 1
between estimated and actual costs. Various proposed control schemes and
procedures for delineating work packages have had marginal success. There
is evidence that failure of the control mechanisms is due to improper 1

implementation, unresponsive management, inaccurate interpretation and

inadequate analysis of reported data, and untimely reporting of problems.

Unfortunately, insufficient emphasis has been given to the analysis

of cause and effect relationships of software development. Although

there has been extensive discussion and some evidence presented in the
literature as to the impact of selected practices of the developer and
purchaser on software costs, comparatively little analysis had been per-
formed to assess quantitatively a broad spectrum of these effects and to

isolate controls for mitigating these effects.

1.2 Study objectives

In response to this need, Doty Associates, Inc. (DAI), began a study
in February 1976 of "Software Cost Estimation," under Contract Number
F30602-76-C-0182 with the Information Sciences Division of the Rome Air
Development Center (RADC/IS). An overall objective of the study was
to reduce the variance between estimated and actual costs of software
development. This objective was to be effected through a detailed under-
standing of the factors that influence software size and cost estimation,
the development of techniques for improving the reliability of these
estimates, and a recommended methodology for estimating the cost of
software development. The research was structured into three tasks,

specifically to:

° Identify those factors that cause unreliable software cost
estimates, including deficient practices of the software
developer and the software purchaser, that lead to inaccurate
software cost estimation.

° Examine techi:iques for eliminating or mitigating the effects
of those factors identified as having adverse impacts on
software cost estimation. Techniques determined to be of
value should be easily implemented in a timely manner and
should address problems related to both the role of the
purchaser and the developer in software cost estimation.

@ Develop an overall approach to software cost estimation
which integrates all aspects of the problem concerning the
developer and the purchaser. The approach should recommend
standardized procedures for ensuring that future software
cost estimations are reliable.

An extensive literature search was undertaken to assess the methods
and results of related studies performed previously, and to accumulate
data to supplement that in DAI files. Correlation and regression tech-
niques were used to identify and evaluate those factors having an impact
on software costs. Non-linear regression and linear multivariate re-
gression techniques were used to derive models for estimating the time
and manpower required to develop software. Then, the impacts of the
factors on the estimation process were analyzed quantitatively; the
analysis results permit adjustments to the estimates which reflect
characteristics of the software, constraints to the development, and
parameters of the development environment. Not all the effects could
be quantified; however, values were derived for factors having the most
significant effect on costs. Proposed controls to alleviate adverse
effects of the factors, the models and the adjustment ratios have been
integrated into a methodology for improved estimations of software de-
velopment costs. The approach, discussed herein, has been incorporated
into a guide (Volume 11 of this report) for improved software cost

estimation for use by government and contractor personnel.

One of the serious aeiicicrcies in the available historical data
was that it frequently did not include estimated and actual resources
expended on software development programs. This data was considered
important to isolating the factors that affect the accuracy of an esti-
mate. Only data received from the Air Force Data Systems Design Center
(AFDSDC) contained this important information; but even this data
proved inadeguate for use in this study. It was initially intended
that this type of information be obtained from Air Force SPOs in-
volved in software development; however, the data could not be made
available. This adversely constrained the quality of the study
results. 3

1

The collection and analvsis of the datas revealed that there are two

other important deficiencies inhibiting the establishment of reliable

b oo o % -

!

software cost estimation procedures: (1) precise and rigorous defini-
tions of the data elements collected, and (2) a systematic metnod of
collecting such data. This revelation is not new, for it has been dis-
cussed in numerous prior studies by various authors. Nevertheless,
because of the importance of accurate data to the results of this

and future studies, and the intended use of the reported cost estimation
methodology, it is considered imperative that the concern be expressed

here.

Without specific definitions of data elements, it might be assumed
that data collected at various activities and in various reports and
studies are consistent and therefore can be aggregated. 1In practice,
due to the inadequacies and inconsistency of definitions, supposedly
similar data is often quite different. (An important example of this
is the various interpretations of what actually constitutes a source
instruction count for the purposes of determining the size of an actual
or proposed software program.) Thus, resources should be devoted to
the collection of data in a rigorous manner so that specifically defined
data is collected. 1In addition, data collection and analysis personnel
should be fully knowledgeable of the nuances in the data definitions to
ensure that proper data is being collected and utilized. More accurate
and consistent reporting of data would have improved the results of

this study significantly.

If the collection process was automated, the data would be more pre-
cise and consistent. This could also possibly lower the cost of collect-
ing the data, although an initial investment cost would have to be
absorbed to implement the automated procedures. (As an example, some
extension of the procedures outlined for Programming Support Libraries
in the RADC Structured Programming Series, [85], could be implemented

for the automated collection of sizing data.)

1.3 Summary of results

Through the literature review, encompassing 137 documents, and inter-
views with several software development agencies, over 100 factors were
identified as potentially affecting software costs. The effects of 42 of
these factors were found to be significant; however, data limitations

only permitted the effects of 29 to be quantified.

Control procedures have been proposed for mitigating the effects of

the 42 factors. These controls, and algorithms for estimating the cost
of software development, have been integrated into a methodology for im-
proved software cost estimation. BAs part of this effort, models were
derived for estimating the manpower requirements of software development
by software applications; for estimating the time required for software
development; and for estimating the size of softwarc by application.
The resultant methodology has been structured as a formalized guide for
improved estimation of software development costs to be used by software
development managers and software developers to assist in planning, bud-
geting, control,.and development functions, as appropriate. The guide

is presented as a separate volume of this report.

1.4 Organization of the report

The final technical report of the software cost estimation study
consists of two volumes. Volume I contains the analytical study results,
and Volume II is a management guide presenting a time phased overall
methodology for estimating software development costs. This volume

consists of the following:

® Section 1 contains the introduction to the report, with
comments on software cost estimating, and a description
of the objectives and tasks of this study effort.

] Section 2 discusses the study approach and methodology,
the literature search, and the data collection and analysis.

e Section 3 discusses the factors affecting software cost
estimating, including those in the developer and purchaser
domains.

i e

) Section 4 presents proposed techniques for improving the
reliability of software cost estimates from the factors
identified in Section 3 as having an adverse impact.

® Section 5 contains study results and recommendations which
encompass the overall methodology for software cost esti-
mating.

° Bibliography presents the technical literature reviewed in
this study effort.

@ Appendix A describes quantitative data bases obtained fram the
literature.

3
3
)
i

iv

el et B RS it i i ke 3

ST o

2. STUDY APPROACH
The study encompassed the following functions:

- a literature search to evaluate the results of similar study
efforts,

- the collection of data to form a base with which to draw conclu-
sions relative to software cost estimation,

- the analysis of data to identify the factors having adverse
effects on software cost estimation,

- the selection of procedures for controlling the effects, and

- the development of a method for estimating software development
costs.

Since it was intended that the cost estimating method include an
analytical model, emphasis was given to the colikction of quan-
titative historical data which define the characteristics of software
programs developed previously, the resources expended in developing the

software, and the environment in which the software was developed.

2.1 Task 1. Identification of Factors Affecting Estimates

The objective of this task was to identify factors that cause unre-
liable estimates of software cost. The factors were partitioned into
three categories: (1) those primarily the result of software purchaser
practices, (2) those primarily the result of software developer prac-
tices, and (3) those caused by other influences. This effort consisted
primarily of two parts; the first was the collection of historical data
relative to software development programs; the second was the analysis
of the data to isclate those factors having an adverse impact on software
costs. In the purchaser domain, the areas examined included performance
specification, task identification, program management, and inherent

uncertainties in software cost estimation. The developer domain was

id
|

e ——

o

structured into three sub-domains: preparation procedures, project man-

agement procedures, and methods of determining actual costs. The third

domain involved software application.

2.1.1 Data collection. The data collection consisted of a review
of DAI corporate files for applicable data, a literature search, and
personal interviews relative to software development and associated
estimated and actual costs. Besides the data existing in the corporate
files, the most significant quantitative data was obtained from the
literature. The Bibliography reflects the reports reviewed; however,
only a small number of the documents contained data suitable for analysis.
The data bases from which relevant information were derived are dis-

cussed in Appendix A.

Interviews were conducted with management and staff personnel at
several commands, agencies and companies to obtain applicable data, to
discuss the experience of the individuals (or groups) in estimating
software development costs, and to identify other potential sources of

data. Among the agencies interviewed were the following:

- AF Aeronautical Systems Division, Wright-Patterson AFB, Ohio

= AF Data Systems Design Center, Gunter AFS, Alabama

= AF Electronic Systems Division, Hanscom AFB, Massachusetts

- HQ AF Logistics Command, Wright-Patterson AFB, Ohio

- AF Space and Missile Systems Organization, Los Angeles AFS, California
= Army Ballistic Missile Defense, Huntsville, Alabama

- Army Missile Command, Huntsville, Alabama

= DoD Computer Institute, Washington, D.C.

= General Research Corporation, Santa Barbara, California

- IBM Corporation, Westlake, California

- Johns Hopkins Applied Physics Laboratory, Columbia, Maryland

- Mitre Corporation, Washington, D.C., and Bedford, Massachusetts
- Naval Electronic Systems Command, Washington, D.C.

- Office of the Secretary of Defense, Washington, D.C.

These were accomplished through personal visits and by telephone. For
the most part, the interviews only provided qualitative data and litera-
ture references. Numerous other contacts were made by telephone and
correspondence.

.

From the commencement of the study effort, it was recognized that
there would be certain problems associated with the collection of data
to support the analysis. Among these were the acknowledged difficulty
in fecoupxng historical data, especially detalled guantitative data (as
opposed to qualitative or judgmental) , the restructuring of the k3
dynamics of software duvelopmen{ programs which encompassed changing
specltications, and outside influences not always documented or remembered.

The dynamics of the software development process make it vital that data be

Obtained relative to the periods before, during, and after development

of the software. A pre-development cost estimate might have been based i3
on specifications vastly different from those of the final product.
Thus, the unreliability of the cost estimate may not have been entirely
the fault of the cost estimation technique, but of a poorly written
specification of the product delivered, or of specification revisions

resulting from changing operational requirements.

The difference between the initial cost estimate and the final actual
cost, therefore, was considered very important data. However, there is
little, if any, data of this type available in the literature. It was
included in the AF Data System Desigyn Center (AFSDC) Planning and Resource
Management Informat.or System (PARMIS) data. As noted previously, the
data was not analyzed because of deficiencies. It was intended that this
type of information be obtained from Air Force SPOs through in-depth inter-
views and reviews of program data. However, the data could not be made

available.

Another major problem, which became c¢vident in the data collection
and had a significant cftect on the data analysis, was the lack of con-
sistency in the de!initions associated with software and its development.
Where possible, DAI evaluated the consistency and adequacy of definition
before the data was analyzed. In some cases, data was deleted because it

was nebulous or erroneous

10

2.1.2 Dpata analysis. Because of inconsistencies in the data, it

was not possible to integrate the ten available data bases outlined in
Appendix A. Therefore, each was analyzed independently to determine if
factors affecting costs could be identified. Since none of the data
samples included both initial estimated and final actual costs, the
factors which affected the accuracy of the estimates could not be identi-
fied explicitly. Consequently, implicit identification was accomplished
by evaluating factors considered determinants of software costs and by
presuming that errors in estimating the magnitude and/or effect of these
factors were most responsible for inaccurate cost estimates. Regression
techniques were used to evaluate the expected cost impact of the factors.
The effects were assessed for consistency among data sets and were com-

pared with information presented in the literature.

For those factors which could not be measured quantitatively, or
were unsuitable for quantitative evaluation based on the data available,
judgmental statements were made as to their impact based on the perspec-
tive gained from the overall analysis, prior corporate experience, and

the literature search. \

2.2 Task 2. Examination of Techniques for Controlling Effects

Techniques were explored for controlling the factors identified as
having an adverse impact on the reliability of software cost estimation.
This task essentially involved the hypotheses of control mechanisms and
the analysis of data to determine if the hypotheses were substantiated.
In addition, techniques that have been tried and are currently in use
for controlling the impact of these factors were examined for their
effect on the reliability of the cost estimate in either quantitative or
qualitative terms. Procedures have been presented for controlling the
effects of each of the factors found to have significant impact on soft-~

ware development costs.

11

viid

2.3 Task 3. Development of an Approach for Software Cost Estimation

The objective of this task was to develop a methodology for gener-
ating improved estimates of software uevulobment costs. A set of mean
value algorithms for resource expenditures was developed in which size
(number of object or source instructions) was the only known parameter.

A procedure to adjust these estimates was devised, using the quantitative
impacts identified in Task 1 modified by the controls suggested in Task 2.
The resultant procedure is intended to be dynamic in nature, since dif-
ferent algorithms are to be selected depending on where the project is
situated in the software conceptual and development phases. The accuracy
of the estimates should improve progressively as the project proceeds
through the development cycle and more definitized data are made available

upon which to base the software cost estimates.

Recommendations are presented as to when controls should be imple-
mented throughout the development cycle of the software. Those important
to the conceptual and analysis phases are relevant to requirements analy-
sis, software specifications, task identification and definition, tradeoff
studies, Work Breakdown Structure (WBS) development, and cost and sizing
procedures. Controls effecting the software development phase include

status and cost reporting, on-site monitoring, and program management.

Individual models have been developed for estimating the man-months
of effort required for developing command and control, scientific, util-
ity, and business type software programs, and for all software programs.
For some categories of programs, models have been developed for programs
of less than, and equal to cor greater than 10,000 instructions (both
object and source code). Then, the procedure indicates how the factors
affect the algorithms in terms of the increase or decrease in productivity
anticipated. In addition, the approach includes an estimation for the

duration required for developing software and presents procedures for esti-

mating the size of programs.

P i s 1 St PR 0 2§ e 30 g o o e WP SIS SR IA DA

These methods have been incorporated into a formalized procedure for

improving the reliability of estimates for software development costs.

The approach, presented in Volume II of this report, is a guide for esti-
mating the resource requirements of software development. It also provides
information with which to evaluate the impact of selected factors on

these resource requirements, and mechanisms to mitigate the adverse

effects on these factors. The approach proposes standards and pro-
cedures to which the purchaser should adhere in the preparation of the
Statement of Work (SOW) for the Request for Proposal (RFP). They impose
controls (constraints) on prospective developer responses. Further,
parameters and procedures are recommended for cost monitoring and con-
trol by the purchaser to ensure that actual costs remain within acceptable

tolerances of the cost estimate.

Implementation of the overall approach will impose certain con-
straints upon the software purchaser and the developer that may initially
appear to restrict the dynamics of the development. However, the
constraints must be considered in tradeoffs among the following: the
need to keep actual costs within tolerances of the cost estimates, the
need to acknowledge the changing requirements in a viable command en-
vironment, and the desirability of modifying initial software develop-
ment specifications to incorporate elements of new technologies.
Further, the complexity and size of a specific software development
project, and the duration (time frame in which the project must be com-
pleted) will, of course, also affect the constraints and tradeoffs.

The techniques incorporated in the cost estimating approach are not

new; however, the application of the methodology to a time phased
management structure for software development is unique. Since Depart-
ment of Defense and Air Force directives related to software development
contain adeguate, but sometimes defused, policy guidance, drastic re-
visions to the directives are not presently recommended. Instead,
emphasis is given to the proper use of the directives in conjunction

with the proposed methodology -

3. FACTORS AFFECTING THE RELIABILITY OF SOFTWARE SIZE AND COST
ESTIMATIONS

In Task 1 of the study, DAI identified factors having an impact on
the reliability of software size and cost estimations. Limitations of
the data prevented an exhaustive analysis of all factors that could have
an impact on software development. Nevertheless, the scope of the factors
analyzed was comprehensive and it is unlikely that a factor having a
significant impact was excluded. The unidentified factors are not ex-
pected to affect the accuracy of the resultant cost estimation methodol-

ogy appreciably.

In this study, the factors were divided into three broad categories
or domains: (1) those that are primarily the results of purchaser prac-
tices, (2) those that are primarily the result of developer practices,
and (3) type of application. The developer domain categories are
further divided into sub-domains and all three domain categories are .
divided into areas. Some factors are applicable to more than one domain

but were assigned to the domain in which they were most applicable.

This section discusses the factors investigated, the type of in-
vestigation performed (i.e., quantitative, qualitative, or both), and
the results of the investigations in terms of their impact on software
cost estimations. Table 1 provides a listing of all the factors
investigated in this study. It should be noted that in a number of in-
stances where impacts were identified, the magnitude of the effect

could not be assessed due to limitations of the data.

3.1 The data

Ten sources of data, described synoptically in Appendix A, were

reviewed for their applicability to this study. These included four sets

s oscre s s 2 RS-0 SR S S

TABLE 1. FACTORS ANALYZED FOR EFFECTS

Software Characteristics:

° Size
® Complexity
e Operation

= Application

= Response time/real time operation
= Frequency cf operation

= Special displays

= Number of ADP centers

= Data base management

= Transportability

= Reliability

s, 7 15 AR

® Data Base

= Number of words 4
= Number of classes of items

® Messages

= Number of inputs
= Number of outputs

i Development Characteristics:
® Requirements

= Development time
= Quality
= Testing
= Changes during development
- Design interfaces
- Language
5 = Maintenance
- Need for innovation o
= Stability of design
A = Adequate definition of operation requirements
= Developer participation in design
‘ = When CPU is specified during software development

'] Hardware

- Memory constraint
= CPU time constraint
= Concurrent development of ADP hardware

15

e T

S S R S0 it

s A5

TABLE 1. FACTORS ANALYZED FOR EFFECTS (Continued)

Experience

& Programmer experience with language

- Programmer experience with application

- Customer experience with software development
= First programming effort on computer

Environment

- Average turnaround time of batch processing during development
= Number of management controls during development

- Number of agencies that must concur with software design
- Software developed on computer operated by another agency
- Availability of computer to programmers

- Use of time share in software development

- Software developed at site other than operational site

- Software developed on computer other than target computer
- Number of locations at which software is developed

= Software developed at military organization

~ Effectiveness of communication during development

- Availability of secondary resources

- Availability of support software

- Programming facilities

= Programming environment

Management

- Work breakdown structure

= Cost/schedule control system

- Data collection

- Personnel mix

= Modern programming techniques

- Definitions

- Total pages of documentation

- Total pages of external documentation
- Number of users

16

b it i —— ek it

\
¥
{
|

of data reported by the Systems Development Corporation (SDC), [46, 49,

120, 132], two sets by the Planning Research Corporation (PRC), [13, 104],
two sets by the International Business Machines Corporation (IBM), [86,
unpublished] , one by Logicon, Incorporated, [lOlf, and one developed in a
report by the Johns Hopkins University, Applied Physics Laboratory, [81].
Data from a SDC multi-year study of software development programs, here-
after referred to as SDC Phase I [46], II [132], and III [49] Studies,
were used to evaluate the factors affecting cost estimates and to support
other relevant analyses. The Phase III data was used extensively because
of the large number of observations and variables it contains. The other
data bases were used on a selected basis to corroborate results obtained
from the SDC data. When quantitative and qualitative data presented in
other sources of information (see Bibliography) substantiated the analysis

results, these were also identified.

PARMIS Data received from the AF Data Systems Design Center contained
baseline estimates of costs and actual expenditures, the type data con-
sidered important to the study. However, it included inconsistencies and
appeared so unique, it was discarded. Over 85 percent of the programs
reported, all of which were developed at the installation, did not exceed
budget estimates. This situation made the original estimates suspect.

In addition, it could not be determined from the data received whether or
not programs had been completed (in cases when the actual costs were less

than half that anticipated).

3.2 The analysis

The criterion used for identifying the factors that affect software
costs was that the probability of correlation existing between the cost
and factor must be at least 95 percent. For the analyses, man-months of
effort in software development was used in lieu of costs. That is, the
effects of factors were assessed in terms of their impact on the man-months
of effort required. This was translated into effects on productivity in
terms of source instructions per man-month or object instructions per man-

month, as appropriate. Man-months was preferred because it avoided

L7

conversion into constant year dollars and the associated problems

:

g of cost escalation.

3

]

1 As shown in Figures 1 and 2, the data from the SDC Phase III study

% was highly dispersed. A major segment of the more highly dispersed data
i

was programs in which the delivered code was 40 percent or less of the !
total ‘code written. Several factors could cause this effect (e.g., chang-

ing requirements, inadequate specifications, inadequate communication,

| etc., alone or in combination). These programs were deleted from the
data set and were analyzed separately. By removing this data, the re-

ports of other factors could be assessed more effectively.

Another source of dispersion was that some programs reflected a
productivity so great as to be unreasonable. As an example, one data
point reflected 6500 new source instructions delivered for one man-month
of effort. The source of error in the data was not known; it may have
been caused in recording the data or by recoverable code being reported
as new code. The data was assembled prior to 1967, therefore, it did
not reflect modern programing practices which reportedly can result in
unusually high productivity. To decrease the impact of such errors,
data points reflecting a productivity of greater than 2000 source lines
per man-month were also removed from the data base. The data plots in
Figures 1 and 2 indicate the specific data points deleted. Forty of the
169 sets of data were removed. Discrepancies were also noted when com-
parisons were made with the same data presented in a previous SDCLstudy.
Even with corrections and the deletion of the two sets of data'causing

‘ dispersion, the data was still highly scattered. Inconsistency in
interpreting i formation requested, and errors in recording the informa-
tion may account for some of the variance. However, the factors identi-

fied and analyzed undoubtedly account for most of the dispersion.

The magnitudes of the effects were assessed using multivariate re-
gression techniques. Several runs were made, adding and deleting com-

binations of variables in order to develop a better estimate of the

18

Y}

uotyerndod [P303 103 B3PP 9POD 81INOS T 2anbtg

(SANVYSNOH1) 3A0D 324NO0S 40 S3NIT

L
H

21 gat a2 83 %84 % 4
v A 2 v s v Sq @
g C T L v
[]
[e] ¢ z P01
®
HLNOW-NVW H3d SINIT 0002 e @®
a30339X3 ALIAILONAOYd e ° * o » "
= ® .4 Q@n
N3ILLIYM 1¥101 40
LN3IDH3d OY NVHL SS31
SVYM Q343AI73Q 300D ® o ° SHLINOWNVW
$Q3IAOW3IH Viva ° §
. . cIoha
®
®
1 6a¢
[]
4 2ag

19

aat e nEREb e G bt i s e o o o i e e ——

-SUOT3IONIISUT SAUT] 22In0S JO JIaqunu 3yl ST T «

%(000'0T>I) uot3zerndod Te3O03 I03F BIEP BPOD I2ANOS °F aInbta

(SANVSNOHL) 3a0D 304NOS 40 S3ANIN

cl al 8 9 . b 2 9
* 2 ¥ @ % LT @1 ° @ ® Q
(o] ® - ®e
® ® o @
(o] ® o o e»®)
° [Q
. ® @ @ oo @ =
L e ®
[4 oe >
° ¥ ‘
e o -
>) a1
° ° ®
° v ® <
- o ° []] W.—
. ® SHLINOW-NYW
e
HLNOW-NVW H3d SaNIT 0002 - Az
d3a339X3 ALIAILONAOYd [e]
N3LLIHM TVLOL > =
40 LN3J4H3d OV NVHL @ 9 G
$$37 03¥3AI130 3000 @ °
*d3AOW3Y viva ®

i S e~ bl

effect various probable combinations of the factors have on costs. Thus,

the values derived for the regression coefficients represent best estimates
1 of the impacts which would be expected to occur. Quantitative information
3 could not be derived on all factors; however, where possible, qualitative
information was presented. The high dispersion of the data made it diffi-
cult to isolate several likely cause and effect relationships reported

in the literature.

This analysis was also performed for subsets of the total population:
command and control, utility, scientific and business programs. In the
analysis of these subsets, it was found that some variables are not
relevant to the entire population. For example, business type programs

were the only ones using time share processing in software development.

L T TR RSN,

3.3 The results

The study identified over 40 factors which are considered to have a
significant impact on software development manpower requirements, pro- 4
ductivity, and cost, as appropriate. Those having the greatest effect ﬁ
encompass hardwére constraints to the development, environmental param- 1
eters detrimental to productivity, software design characteristics, .
especially when they involve innovations or unique requirements, and
the status of the performance specifications. The effects of individual

factors are discussed in subsequent paragraphs.

3.3.1 Purchaser domain factors. Table 2 identifies the purchaser
domain factors analyzed, and summarizes the results of the analysis.
The effects of factors were evaluated in terms of their impact on man-

power (man-months), productivity (delivered source instructions per man- 4

month) , cost, and other factors.

| 3.3.1.1 Performance specifications. Factors analyzed as dimensions
of software performance specifications include the input and output re-

quirements, data base requirements, operational requirements, response

21 '

~
; 2a0qe P45 11V 1y r r
sseu g sH [oixsu £ puRwO) - /3
18UOT 3% 1y E
T3Ses [en | 350 56 XOW =
-pTATPUT YO Juapuadap ybry apnituben *29p 3G 19AY A3tationpoixg Sax S34 Sax sabueys °z
“O3p MOT 1TV
3129339 ON S
399333 oN :ln
‘anbea 03 [Te39dP WO1j S305 *23p %05 :0S
2OT3ITUTIAP Se SasPazdap LAItarionpoid *23pP A5€ :0/D A31AT350pO1] EEF s34 S3X uoTITUTIAA T
sjuawaxtnbay Teuotr3lexado ‘a
*$32IN0SAIL 14D 3O ISN JUIT
-UtT saxew 3T ue paiinour aze
3 JuaadoTanap PISEIIOUT ‘ 1AamOH
-uajutew pPaoNPal pue AJTTIQIXI[F u
1 30 S3T33udq 3ISOD ATOAD-IZTT sey argetIes 380D Sax OoN sax pue; e300 €
aseg
I0UTW UIUOK-ueH Sax Sax S3x aseg e3eg Ul SpPIoM 3O °"ON °Z
] aseg e3eq uv
ICUTH Sa4 S3K EETY SWa3r JO SISSETD 3JO "ON "1
10U S30p eIPP Iarieitiuend
pue puemmod uo 3Ideduwt saey 1 |
-3TIU3TIOS URYI TeTOIJumIOD uo _ | sjuawaxTnbay ased eI "C
_ |
| | o~
n | o™
|
|
i |
| s9K S9X oN sierdstg tersads ‘g
m Sws3] abessay
! SBA SAA S3A andanp 30 ‘ON ¢
& s3dAl abessap
SYIUON-UBW SaX EEYS sax andano 30 °‘ON ‘1
-s1a3awered Burzts Arurew -suorjenridde SUQT3IONIISUT
3T3T3uaTds 10 /D uey3 suorjedstrdde 30 IaqumN Y3ITa
burssasozrd e3Pp [eTOI3WWOD uT Juejzzodur uostieduoc) ut
210w 1@3 aI° I0I0B3 STYI I0j SIIaueied juedtjyrubtsur s3juawaxtnbayg andano g
swa3] abessay
s 594 Sax Sax andur 30 ‘*ON °Z
sadi] abessapn
SUIUOW - UK sax Sai 534 andur 3o ‘oN 1
‘s1a3awered butzts Aruren -suorjeorydde SuUOTIONIFSUT
51313uUa1ds 10)/D uey3 suorjeotrdde 30 23qumN Y3ITtm
butTssaso1d ejep ssaursng ut Juelzoduwt uosyiedwo) ut yotIest 1oads
2101 1ej 3IP I1030BF STY3I 103 SI3Ijdwereg IuesTyTubrSur sjuswaxtnbay Induj ¥ uPwIo; 18
y Paiou] 3t squeny | en?
SIUGLLO) 08334 apquiar yoedug pazA{our poehtl 1 ”
A u eiep 3o odAl

NIVWOd ¥3SYHOENd "z J19YL

)
4
i

x{e ayi 1Iv - 11v¥
ssaulsng - SH

21313
1013U0) pue p

o G503 O - At 455 i 5 N AR 50, 13N S -

e
*37042-2317 ay3 19a0 butaes Ijedroriue
“12A9m0H ‘3500 3jusudoraaap ay3z 13ybry
ay3 ‘sjuawaxztnbax A3rrenb ayl zaybry ayyr aseaioul 350D S3X ON EE S s3juawaztnbay A3trend °p
“7TOH pasn
A1opTa pazipiepueis A[Inj O3 TOW 3and umi3oads
WO1j 3ISOD UT 3SEPAIDIP I[ITSSod umwIXeR 13A0 T 03 § 3500 S3A OoN EEDS sjuawaitnbay abenbuel ‘I
aseazdaq Aatat3onpoad EEYS S oN UOT3IBAOUUI X0j 3IUBWSITNLIE “H
a
AoISTBIIC umouNun SYIUOW-UBK ON S8x ON | sabeq Teuiajzuy ;0 II3QUMN "7
HUTWITFUOD © S Pasn aq ued ‘sS3IINITP
-uadxa 25INOSdI Y3ITm pae[a1100 ATYBTH uMOUNUf SUILON-UEW S3A EEVS ON | ssbeg (euia3xz jo Idqumy "1
s3juawaxTnbay uoTIRIUBUMDOQ O
*3500 wa3sds [P0 uUO 33339 3IVBITP
-ut ue ST ‘xaa3amoy ‘3oedut zolew ayy 3npayss
©3s00 arem3jos aya Iaybry ay3 ‘parzrdads ay3 ur patrjraads
ST NdD dY3 3[Npayds ay3z ur za3el ayl arqerxen 350D S3X OoN S94 SY 1dD YOTYym 3IE JWTL 9
To3p WSY C1TY
T09p %52 ‘s4
"29p %02 ‘1N
*29p 35§ :OS IIBMDIPH
“23p 0¥ :2/D A3tationpoad EETS EES oN |3° uc'lo.agoa JUIIINDUCT G
©09p ¥8Yb A3tat3onpoxd sax EEYS sax ndo U0 SWIL 3ISATS "¢
‘03P %8G A3taT3onpoad EEYY S3L SaL A1oway pue Iwrl ‘¢ ~
™~
29p 30f T1Y
‘pasn *39pun isd
Azowsw jo 3uad1ad g 3T 133e31b yonu *23p W51 :1n
Joedu; -Alowdw IrgerreAr jo juadiad *23p %07 :2S!
08 03 59 butsn 103 s3ioedur pa3jdadxy *oap 802 2/ f3tataonponiq 591 sax oN Azouan
199334 ON s
dwWr3-Teaz sueaw Arrersusab t93p LS N
3T 3u3sazd ST JUTRIISUOD IYI UIYM “o9p MUy 0§
‘awty asuodsaz y3ITtm paleraizod ATybty ‘oap wbs 0/ A3TAT3IONpPOIY 52% sax oN awtl 1
SIUTRIISUOS IIBMPIRH * 3
“O3p WGZ 11V
309333 oy 58
o8P w iz 0 {
dWr3-[ea1 o3 Aep 1ad *59p s0p 08| -~T¥az1 3o 33
20U wo1jy 5306 JuswIIInhal Se aseaisaq *29p 857 /0| Artar3onpoag EEYS Sa% ON s3uawaxtnbay awry asuodsas -3
‘ubtsap (DaNUTIUCS
03 sandut iears 3praozd 30u saop YoTYm ks f.::m_
t 138013 100ds
w.nz‘lcc mucoiwn.a:vw‘u‘now u,uc.?: 25134pY aseaznad A3tarionpoag sax ON EEDS ubIs3q 03 Adejiajzur g ATuUPWIOI 2
’ 3 ‘ J]end
EHEEe S 30w fa) ¢ poa) U Jngoe ©oaay
i 3 3
(P9NUTIUOD) NIWWOA MASYHOMNd 'z T4Vl
- - PSS S S v == ' n— — poT——

A i e N

A it 1 o e IS M SNk . S N

g -+

Ariraa - a0

3 TIV - TV 515
ssautrsng - §§

uol1ds - DS

1043UQ) pue puewIO) - D/

tsuotjeat pddy

*3onpoad paarasax jo A3rrenb
32333% Aew 3ng ‘A3rarionpoxd uo 303333
ou aaey o3 zeadde syoxjuod Jusuebeuen

A3trenb 1aybty aaey Aew paartadax jonpoad
3yl ‘zaaamoH - A3tarionpoad zadoraaap
ITWTIT O3 SWaas aduariadxa Iaseydind

“3Ud3ISTSUOD OU ST uoTaIng

-TI13STP 30 adeys 3INg ‘S3DINOS3I 3O uUOTI
-NQTIISTP aWT3 UO 3[JeTTeae ST ejep [edT
|-103sTH "umouy 30u ST or3ex IbueYOXa Y3
3O WIO3 TEPOTIATPUR 32PXd 3YL *pa3daj
-3 st A3rar3onpoad sny3z ‘arqesabueyoxad
A19913 J0u 3ae syjuUow pue udw -yibuay
ATNPIYDS YITM PIIBTIIIOD ATYBTIY st 3zZTS

*§3502 37545-33T7 paonpax ajedroriue
13A9Mm0Y ‘S3500 IuawdoT24dp ISEIIOUT

©$3500 Juauwdoraaap 3asSeaIdUT SNyl
pue ‘A3TTIQIXAT3 2oNpax ued TJOH JO UOTII
-eZTpIepPURIS O3 DPIebalr y3Ta SIusdwaITnd
-21 A3rrrqe3zodsuexy 3ATSSaOXI Cs3uaw
-311nbax abenbuel 3o uor3zduUN3 B ATUTER

*saxnpadoad bur3isay
3yl UT papRTOUT ST AvA 3uapuadapur 3T
hsoo juawdoraasp aremijos [P303 UT 3SPAID
-Ut $0Z 30 10303 e PIZI[TIN sey (QSY

a124o-3311
1340 sburaes ajedrorjue ‘I3A3MOH *3S0D
Juawdoraasp ay3l 13ybry ay3 ‘HuUTISII IIO0W

*arodo-azrr
19A0 butraes ajedroTjue ‘IIA3MOH “3SOD
juawdoyraaap ay3z 1aybry ay3 ‘Juswairtnb
-21 f3ryrqger(ax 3yl 3uaburiys azow YL

s3uaduns

309333 ON

09339 ON @0ouat
-23dx3 oN "29p

%.7 @douariad
-X3 9ATSUIIXF
"Dap %0p @ouat
-2adx3 pa3iTwin

saaIn) 3§

umouun
umouxun

aseaxduy

aseaiduy

ASA 3udpuad
~3puT 101 07
3o asearduy

aseaidury

aseaiduy

£31AT30NpPOIg

A3tat3onpoag

$321IN0SAY ;0
MOTINQTIISTQ Wy
pue ‘A3rar3onp
-0x4 ‘arnpayos

350D

350D

350D

3500

350D

ON

Sak

prmousun
rzocx::

sax

SaX

sax

carx

ON

ON

on

ON

ON

ON

EETY

ON

ON

sax

stend

S10a3uU0)
Juswabeury jo Faqumy ‘o

aouatzadxy 1aseysing °g

ATNPaYDSs juawdoraasg -y

sjuawaatnbay aosueuajuren ‘o

A3trrqeyzodsuexy -y

UOTIEPTTEA PUP UOTIBDTITIBA W

sjuawaxtnbay bur3ysay 11

B

sjuswaiTnbay A3TTTQRTISE N

1or3e:
-13T3uapl %sel

(Panut3uoD)
suotT3Iest;1oads
aduewio3Iag

(PanUT3UO)) NIVWOD dASYHOENd

‘Z dT9VL

24

Ayrgean -
saoqe ay3y (1Y - T1v 213T3Ud10g -
SSauts - S| 10I3u0) pue puvuno) -
uoT3ed207
393333 ON, A3tar3ionpoxgd Sax 5D ON A2e3TTTW ® 3® 3uawdolaaag ‘i
“UoT3ed0T
Juswdoraaaq
arqrssod 3t ‘a3rs| auo ueys siou suoT3B207
auo 3v juawdoyaadp buraey o3 abejueapy| 3T asea1dap w7 A3tationpoig S3K S3L OoN juawdoraaaqg jo Iaqumy "oy
‘03P % OZ:TIV
cAt3uedtztubis L3trar3ionpoad Iseaaduy 3109339 ON :SH
PINOYS 3T ‘3Iudwuoitaus [euctierxado ay3y *23p $0¢ 1l
ut pasn aq TTtm eyl zajndwod swes ay3 uo| “29p S0T DS 3us133371d x33ndwo)
Judwdotaaap ayy op o3 atqrssod ST IV II *23P 8GS :D/0 A3tat3onpoad SS9 sax oN 33bzel pue 3jusudorasag L
‘887 Se yonw se aseardap Aew A3rarjonpoad a31s
sty *23Ts [euorzezado ay3 3P 3uawdolmrA9p) teuoriexadp JON 10 3315
s1y op 03 paitnbax sy 1adoraadp ayl 31| 3@ T D3P W8T A3taT3onpoagd SR S9R ON Teuor3iexadg e Juawdorasag "3
*aat3onpoad aiow 3q 03 305 A3TATIOND
saeadde jje3s suotrieiado ajexedas y ‘juaw| -oxd saseaadur
-UOITAUD yd3eg P UT AJTTTQRITRAR IuUTYOPW| ssanoy 1a3ind 223ndwos
Uo Spuey JAeYy 3IOU PTNOYS SIdumre1boig -wo) pajTwIl A tat3ionpoad Saj EEYS oN 03 Ssadde Isumrexbold “q O
o~
s0€ Inoqe Aq A3ratrzonpozad
sty 2onpax o3 sivadde 3t ‘uoriezruebio
Tay3oue Aq uni 193ndwoo © uc JuawdoIAIp A3tat3onpoad 1a3ndwo) s,43ta130V
STy op O3 Pad1oj st 1adoraasp Ayl 3J1 ut *23p W0 A3t1aT3onpoad Sak SaR OoN 23y30uy bursn aadoyasmg "D
aat3onpoxd
‘ys3eg ueys aartionpoad azow) ®10m (7
%07 3Inoqe 3q 03 sieadde burieys aury @Ieys AWy A3taraionpoad sax sax Sak yo3jeg “sa butieys awrl ‘g
‘1auuwg 3s19ape ue utr A3rationpord s3Idajje
Sty3 ueyl 133eaxb 10 sty3 ueyl ssa1 -Aep apuel 19A0 JuUBWIOI TAUZ
134 suiny 1a3ndwos 7 3aq o3 saeadde umwridg To3p GV A3tat3onpoay LTS SoA oN JWYl punoreuin] abeiaay 'y Juswdoyanag
cA3toedes unmwutxey
$31 03 painbrjucd Nd) patjroads Ayrerytut
sd11383n0 Yimo1b pue ‘II[QUWASSE UT ST
JuawdordAap 31T3ua T abier agq ued oeduy 1seazou 150] LEPY ON 532 yImo1o waisks 103 buruuerg ‘3
: (panut3uogy)
*3500 JudWdo [FAID Juaagabeuewl
FFVIIOUT PINOYS UCTIVDTUNUMITE DATIODBJ jAUT aswaidu] 150D Sax OoN e SUOTIBSTUNUMO) ‘1 wr1boig
. [EEREPET cqueny | rend
S IUowwo)) Y9334 aiqetiva 0% lu] pazAivue povf1ae] vory
tendoagg eivp ;0 odh

(P9NUT3UOD) NIVWOd YISYHOUNd 2 FT4YL

o ek e e

%

s - s o=

aaoqe ayl TIv - TIv = O%
ssaursng - Sg 3 = D/
rsuotyest 1ddy
*5paau s,13sn 343 39duw 03 syre; Arajard
-wgp 35npoxd pa1sATIAp Y3 3T arem3jos
ay3 uﬂ OpP32 §00T © 39 PINOD 3sed 3Isiom ayy atqerIea 350D Sax ON €ax sjuswaitnbay 13s puz -
SuoT3IedT3Toads
*&3t1aT3onpoxd ubtsag Teuorjezadn
bue sarouabe adusxinduod ubrsap jof uo pazrnbaix st sduazINOUO)
I3quMu uIIMIBG UOTIBTAIXOD ou Arren3iaty 3199333 ON A3taT3ionpoxg ON EE OoN asoyM satousby jo zaqumy ‘o
20e3133ur 3Isnu wexboig
*&3tatr3onpoad pue suorjezruebio iasn jof Yo Tym y3Tm suorzezruebig uot3edror3zied puef
IaquUmMU U33M3IAQ UOTILTIIIOD ou Arreniaty 3099333 ON A3trat3onpoxg oN ON 13S0 30 Iaqumy ‘Y| sacejiajul Iasp)
‘awry asuodsax pue 10353 aaoqd
H3te pajerazxzon-1a3ut ATybry awr3-Tesx o3 umi3oads 13a0 uor3zezado
y3uow 13d 3DOUO WOIJ SIAOW IUOC SP SISEIIDI 35e8129p w0f A3t1AaT30NpPOIg EEYS S3% ON 30 Aouanbsiy abexaay -
*awT3l Isucdsax yITM pajerazrod ATubt umi3zsads 13a0
“9WTI-TE3I PIBMO] SIAOW IUU S 535RIIDA(Y 95e9123p %0 A31AT3ONpPOI4 EE)S EED oN auty 23exadp sberany - d
paonpax st A3tarisnpoxd uorjzezado a3rs
JuawdoTaAdp UIYI ‘IITS 3uO ueyz aIow 39 -T3TnW 103 S53TS UOIIRZTITTIN JusurioxTaug]
33exado o3 sey aIPMIFOS PIIIATIAP a4l 3T ASeaI09p %87 X31AT3ONpPOIg EEDS S8X OoN 2IeM3J0s ATAIITNN "V uoT3IoNpoag|
*3500 juaudorassp uo 3oedut abxey
e 2aey ued ‘weyl ajexado o3 Tauuosiadg
pue saT3TTTOoRy 193ndwod se yons saTITTTORY
buturesboxd jo A3jrriqerTeAR puE A31Tend 2uyY argertaey A3tat3onpoag S3aX ON Sax Sa13111o84 Butumrezboxg .J
*53500 juswdoraaag
uo 3oedwr 3abreT e aaey prNOYS Irem3jod
310ddns jo A3rrenb pue A3jrrrqErTeAaR auy arqetiep 350D Sax ON Sax aaem3jos 3aoddng \A
“309333 3IS0D [RTIOT3AUIQ B waey 03 1eaddd
prnom butwmrexboid uzapoy Se saurrdrostg
fons 4Aq pajeard juswuortAuz Sutumrexboxg oyl atqerxep A3taT3onpoag Sax SaK Juauwuoxtauy Sutumrexboij - pf
*3AT3onpoad aIlow 3G pInom aieM
-3308 padoraaap Arsnotaazd u3tm adejiajuy
03 2AeYy 30u $30p 3IPY3 udwdoraaap aiem3jod (panuT3uo))
® 1Pyl WSIS PINOM 3T UOTITNIUT 351Y JUBWUOITAUT
-ex3u00 03 1eadde $3[NSax aatrjelriuend sy 303333 oN A3tat3onpoag oN EEY SaR -1 Juswdotanag

0

JUDLAUOD

pa3oagje
arqueriea
uapal

we1boxg juspusdapur

(panuT3uUO0))

NIYWOd d3SYHOdNd

‘¢ d14YL

T e

time, hardware constraints, documentation requirements, quality, language,
reliability, testing, verificaticn and validation, maintenance, and trans-

portability.

3.3.1.1.1 Input requirements. The 1input requirements analyzed (num-
ber of 1nput message types and number of input message items) appeared
to have little impact on the software costs when analyzed in the presence
of other variables (e.g., number of source or object instructions). 1In

commercial or business type data processing, where I/0O is generally large

relative to computation, these types of factors have been claimed to be
determinants of software development cost, [104]; this is especially true
for transaction type processing. For scientific processing or command

and control applications, thes~ parameters do not appear to be critical.

3.3.1.1.2 Output requirements. Output parameters (number of output
message types and number of output message items) were examined with the

same results as for the input parameters.

3.3.1.1.2.1 sSpecial displays. These can be considered part of the
category of factors which are associated with anything new, unique or
innovative in a system. The impact of programming for special display
equipment such as plotters or peculiar CRT requirements was analyzed.

This factor has the following adverse impacts on development productivity:

- Command and control programs, 10 percent decrease
- Scientific programs, 10 percent decrease

- Utility programs, no appreciable effect

= Business programs, 30 percent decrease

- All programs, 10 percent decrease

3.3.1.1.3 Data base requirements. Two size parameters were examined

quantitatively: the number of classes of items and the number of words

N
~J

N

S b . e«

in the data base. These parameters have been claimed to be determinants
of software development costs for business applications. The analysis,
confirming the results of PRC [3], revealed minor impact in commercial
applications, and even less significant impact in scientific applications.
NO guantitative impact was indicated on command and control progréms.
However, with information storage and retrieval being a major element

of* command and control applications, this factor would be expected to

have a large impact. v | g

The type of data management utilized for permanent files was also
evaluated. The basic choices considered an ordinary file management
system versus a data base management system (DBMS) , of which the latter
offers data independence from file organization. A DBMS allows one to
alter the format of records within the data base without modifying every
program that accesses the data base, since the access programs are inde~
pendent of the physical organization on the file. The only program that
would have to be changed in this cé%e is‘the DBMS program. A DBMS has
two beneficial and two adverse effec ‘wrélative to a file management
system and its effect on software cdSt; The beneficial effects are that
(1) it enhances design flexibility, and (2) it should reduce maintenance
costs. The adverse effects are that (1) it increases development costs
since the DBMS program has to be written, and (2) a penalty is paid in
CPU memory and time usage. For many systems the penalty in CPU efficiency
cannot be tolerated. Also, in a number of applications the tradeoff
between the life-cycle cost benefit expected using a DBMS, and the asso-
ciated higher development costs, is complex and requires careful analysis.
Quantifiable data to examine these tradeoffs were not available.

j

3.3.1.1.4 Operational requirements. The impact of requirements

analysis on the cost of a software project is extremely critical. Un-

less the operational reguirements are definitized to the maximum extent

possible during the conceptual and design phases, continual efforts to

\

"freeze" the requirements will result in increased costs due to redesign,

“coding, testing, and schedule slippage. These costs could become. sig-

nificant, particularly in large programs that have interacting modules.
Unfortunately, there is very little quantitative data with which to

analyze the impact of this factor.

3.3.1.1.4.1 Definition. The sparse quantitative data used to assess
the impact of this element was taken from the SDC Phase III study [49].
The definition of operational requirements given to the developer was
divided by SDC into three categories: in detail, in outline, or vaguely.
Analysis indicated that productivity (source instructions per man-month)
declined as the definitién of operational requirements became more vague.
The following effects were noted in going from detailed to vague re-

quirements:

= Command and control programs, 35 percent decrease
- Scientific programs, 50 percent decrease

- Utility programs, no appreciable effect

- Business programs, no appreciable effect

- All programs, 10 percent decrease

3.3.1.1.4.2 Changes. Changes in the Operational Requirements are
perhaps the most important element affecting software'aevelopment
costs. Very few, if any, projects go through the entire development
phase without requirements changing. Often, large amounts of software
in various stages of development are discarded because of continually
changing requirements. In projects where significant changes in opera-
tional requirements have occurred, software productivity measured in
terms of the delivered product will be very low. An example of this is
the Army Patriot (formerly SAM-D) missile. Over nine years in develop-
ment, about $90 million had been spent through 1975 in developing a
software package that only contained 250,000 object words, [9]. This

yields an object word productivity of 12 instructions per man-month, a

29

. factor of 22 below that normally expected for this size program. Analy-
)
;3v3ﬁ43 sis of the data available for this study indicated that on the average
changing requirements decrease productivity 5 percent. However, in

extreme cases, the effect can result in very low productivity.

3.3.1.1.4.3 Interface to design. Another element that clearly has
an impact is the interface between requirements analysis and design. If
the requirements analysis does not provide definitive and easily under-
o standable inputs to design, an adverse impact on development cost can

be expected. Quantitative data was not available to measure the impact

of this element.

3.3.1.1.5 Response time requirements. Although a subset of opera-
tional requirements, the response time requirements have such a clearly
defined impact that it was treated separately. As requirements change
from developing a software module for management reporting that may have
to respond perhaps once per day or once per month to developing a
module to analyze sensor data in real time, software productivity deF
creases. The results of the study indicated that real-time operation

has the following effects on productivity:

= Command and control programs, 25 percent decrease

= Scientific programs, 40 percent decrease

- Utility programs, 70 percent decrease

= Business programs, no effect, not usually operated in real time
= All programs, 25 percent decrease

3.3.1.1.6 Hardware constraints. In certain applications, hardware
constraints have a large impact on software costs. As an example, be-
cause of weight and volume constraints of on-board avionics, the amount
of memory in the CPU is generally limited. This usually requires that
the software be written with extremely efficieﬁt memory usage, which

lowers software development productivity. There are a number of elements

30

iiaa

e

which have been examined for this factor-CPU constraint in the time
domain, CPU constraint in the memory, the combined time and memory CPU
constraints, the constraint of first development on the CPU, concurrent
development of other components which interface with the CPU, and the-

time in the development when the CPU is specified.

3.3.1.1.6.1 Time. This element refers to the availability of CPU
time to perform any particular function, which becomes a very critical
element in many real-time or on-line applications. The data defined
time as an element in the software development which was either stringent
or readily available. The answers were coded yes or no. For developments
where the constraint was present, productivity was reduced by the

following:

= Command and control programs, 34 percent decrease
— Scientific programs, 40 percent decrease

- Utility programs, 57 percent decrease

- Business programs, No effect

- All programs, 25 percent decrease

3.3.1.1.6.2 Memory. This element refers to the constraint to soft-
ware development imposed by the size of the memory of the processor.

The analysis revealed the average impacts on productivity as follows:

- Command and contronl programs, 20 percent decrease
— Scientific programs, 20 percent decrease

- Utility programs, 15 percent decrease

= Business programs, not able to assess

- All programs, 30 percent decrease

There is evidence that the impact on productivity could be several times

that indicated [18] as the memory used exceeds B0 percent of that available.

3l

it

3.3.1.1.6.3 Time and memory. The combined effects of both time and
memory constraints were analyzed. The impact in the presence of both
constraints can'reduce software productivity by the amounts reflected above.
Other investigaéions of the impact of this element have been carried out by
Barry Boehm, [18), and E.N. Dodson, [43]. Boehm's results, presented in
Figure 3, reflect a drop of 3 to 1 in productivity for worst case condi-

tions. The Dodson results measured the decrease on productivity as 5.2 to 1.

3
F EXPERIENCE —=

— c— —

RELATIVE PROGRAMMING COST/INSTRUCT:ON

L8 o
FOLKLORE
0 | 1 2L
0 25 50 75 100

% UTILIZATION OF SPEED AND MEMORY CAPACITY

Figure 3. Effect of time and memory constraints
on software productivity (developed
by Barry Boehm [18])

32

3.3.1.1.6.4 First development. This element reflects a new CPU
for developing the code or for which the code is targeted, or the first
time the developer has worked with either the development CPU or the
target CPU. If either the development or target CPU is new, then addi-
tional support software will generally have to be developed along with
the operational software. This is especially true if the development
CPU is new. If the developer is new to an existing CPU, either develop-
ment or target, then one expects his normal procductivity to be affected
in an adverse manner. From information presented by Halstead, [61l], one
could infer that developer personnel would require six months to become
fully productive on a CPU unfamiliar to them. The analysis provided a
measure of the impact on productivity of a CPU which is unfamiliar to
the software developer. When the constraint was present, productivity
drépped by 48 percent. This element falls into that category of adverse
effects which are experienced when anything new or innovative is in-~

volved in the development.

3.3.1.1.6.5 Concurrent development of hardware. Another effect
reflecting the development of anything new or innovative, this element
includes the concurrent development of any devices, such as receivers,
sensors, or ADP peripherals, which must interface with the CPU in the
operational environment. Analysis of the data relative to the impact
of concurrent development indicated that productivity was reduced as

follows over those cases where it was not present:

- Command and control programs, 40 percent decrease
- Scientific programs, 55 percent decrease

- Utility programs, 20 percent decrease

- Business programs, 25 percent decrease

- All programs, 45 percent decrease

3.3.1.1.6.6 Time at which CPU specified in the schedule. In many

large weapon systems developmerts, software development is a critical

33

path event, since major efrorts on the software cannot commence until
the source selection for hardware has been completed, [18]. Removing
software from the critical path by specifying hardware early in the
overall system development, or making software development hardware
independent, probably only has a minor impact on software development
costs. However, the indirect effect of having software on the critical
path could have a large impact on total weapon systems development cost.
There was no quantitative data available to measure the magnitude of

this effect.

3.3.1.1.7 Documentation requirements. Even thovngh the literature
purports that the amount and kinds of documentation vary depending on
the type of software [68], and thus should be a factor considered in
developing a reliable cost estimate, the impact of these requirements
could not be determined from the available quantitative data. Interest-
ingly, the data demonstrated a consistency in the amount of documentation

produced as a function of the size of the development effort.

3.3.1.1.7.1 Number of external pages. Analysis of the data indi-
cated that the number of external pages of documentation produced and
delivered with the product is practically as good an estimator for re-
source expenditutes as the number of source statements delivered. They
are both size esqgnigexs, but pages of documentation would not be used
as a predictor variable. Pages of documentation correlate highly with
man-months on a jeometric scale, starting out at six pages per man-
month for small projects and decreasing to three pages per man-month
for large projects. Thus, it is not surprising that pages of documen-
tation is also highly correlated with source statements. General
Research Corporation (GRC) in their study of "Life-Cycle Costing of
Major Defense System Software and Computer Resouzces" for ESD, Hanscom

AFB (59], arrived at similar results.

34

a5 1w O AP PR

——

There is also a mildly strong correlation between the amount of
documentation produced and software productivity, where the amount of
documentation is defined as the number of pages per 1000 source instruc-
tions delivered. As the amount of documentation increases by a factor of
10, productivity decreases by 63 percent. For example, if productivity is
320 instructions per man-month with 10 pages per 1000 lines, then pro-
ductivity will be 120 instructions per man-month with 100 pages per 1000

lines.

Accordingly, estimators developed using these relationships could be
utilized to determine the amount of documentation expected for a software
development, but the relationships should not be used as an estimator of

man-months.

3.3.1.1.7.2 Number of internal pages. The number of pages of docu-
mentation produced by the developer for internal use during development
has virtually no correlation with resource expenditures. This type of
documentation obviously varies greatly among developers and should not

be used as an indicator of resource expenditures.

3.3.1.1.8 Requirement for innovation. Any requirement that involves
innovation or the development of unique software, such as new approaches
to tactical problems, generally has an adverse impact on cost and a
severe decrease on productivity. The magnitude of the effect could not

be assessed from available quantitative data.

3.3.1.1.9 Langquage requirements. Most of the impacts for this factor
have to be treated in a qualitative manner. It is generally accepted
that this factor has an immense impact, not only on development cost, but
perhaps more importantly, on life-cycle cost. The major choice is between
a High Order Language (HOL), such as FORTRAN and JOVIAL, which are essen-
tially machine independent, and a Machine Oriented Language (MOL), which is

machine dependent. The major advantages of an HOL are:

35

® easy transportability of code from one CPU to another, and
e the expansion ratio. .

The expansion ratio is a measure of the amount of machine code
generated per source statement. For a large main frame, with an opti-
mized compiler, it is about four machine words per source statement for
most languages for a typical program. For most assemblers, the ratio
is relatively close to (1 to 1). Since programmers work at about the
same rate in source statements, independent of source language, the
cost impact of HOL versus MOL is 4 to 1. For mlnlcomputegg w1th their
rather primitive machine language instruction sets, the impact is even
greater, since the expansion ratio is about 20 to 1. As maintenance
rates also tend to be constant relative to source code, independent of
language, there is a major life-cycle benefit to HOL versus MOL. The
huge cost benefits due to the expansion ratio of an HOL cannot always be

realized.

The major disadvantages of an HOL are:

® the compiler usually generates inefficient code in the time
and memory domains relative to the average assembler programmer;
and

ES certain types of operations, such as bit manipulations, are
sometimes hard to implement using HOL.

The disadvantage which has the most cost impact is inefficiency of & }
the generated machine code. The inefficiencies of generated code range ;
from 1.4 to 1 (40 percent more machine code and taking 40 percent more
time to execute for the HOL) for the large sophisticated main frame
with a highly optimized compiler, to 4 to 1 for the most primitive of J
minicomputers with a highly unoptimized compiler. This gives effective
expansion ratios of 2.85 to 1 for the worst case, to 5 to 1 for the

best case, of HOL versus MOL. In many cases, such as for real-time .

36

applications or for on-board avionics with severe memory constraints,
these 1nefficlencies cannot be tolerated, leaving HOL as a non-viable

alternative.

Therefore, many variables must be considered when assessing the cost
impact of language requirements established by the purchaser for adher-

ence by the developer. Among them are:

° the language chosen;
® the target machine for the compiler output;

e the optimization of the compiler chosen for the language
selected;

® the degree of standardization in the compiler chosen, which
affects transportability of source code;

® the validation of the compiler chosen; and

® the degree to which functions, that are to be implemented with
HOL, can meet the efficiency requirements dictated by the
application.

Thus, it is not simply a matter of dictating HOL for all functions
to be performed by software in a given application, and reaping the ex-
pansion ratio and transportability benefits. For some functions in some
applications an HOL implementation will fail, because of the inefficiency

of the generated code. For the best case, in which it is specified that

all source code is to be generated with an HOL, the maximum cost benefit

that can be gained over an entire MOL implementation is 5 to 1 over the

life cycle of the system. One could possibly do better than this if

there is a CPU change over the life cycle, and code has to be trans-

ported from one CPU to the other.

3.3.1.1.10 Quality requirements. The elements comprising quality
of software has been a subject for discussion since the advent of com-
puters. Literature contains various definitions of quality and identi-

fies attributes of software that should assure high quality products.

Finally, under an RADC contract, the General Electric Company, [107],

has defined software quality as consisting of 11 characteristics:

® Correctness) Maintalnability
@ Reliability ® Testability
e Efficiency e Flexibility
e Integrity e Portability
® Usability ° Reusability
° Interoperability

Some of these attributes are‘discussed in succeeding paragraphs.
Including criteria for each of these characteristics into a performance
specification will undoubtedly decrease development productivity. How-
ever, before the criteria are specified, tradeoffs should be made to assess
the impact on the software life-cycle costs. For this study, there was
no quantitative data available with which to assess the impact of quality

requirements.

3.3.1.1.11 Reliability requirements. Reliability is one of the
attributes of software quality but it is such an important attribute
that it was evaluated as a separate factor. The more reliability that
is designed into software, the lower the development productivity since
more testing will be required to assure that the reliability has been
attained. However, over the life cycle of the software, reduced
maintenance could result in lower costs. There was no quantitative data

available to measure these impacts.

One of the major problems in attempting to measure the effect of
reliability is that there is no agreed upon definition of software re-
liability. Richards,'[107],'suggests that the definition describe
software reliability as the "extent to which a program can be expected
to perform its intended functions with required precision." The
literature search did not reveal any adequate effort to measure the

relationship between reliability and cost.

38

|
|

3.3.1.1.12 Testing requirements. Software development costs are
related directly to the amount of testing accomplished during develop-
ment. The testing requirements also impact software life-cycle costs.
Therefore, tradeoffs should be considered to assess the effect of the
testing requirements on the life-cycle costs of software. On the average, { *
testing accounts for about 40 percent of development cost. Rates as low
as 30 percent and as high as 60 percent, however, are not unusual., One ‘
of the major determinants of testing cost is the test plan imposed on the i
development by the purchaser. Manley, in an article, "Embedded Computer K

System Software Reliability", in the Defense Management Journal, October f

1975, [32], has postulated a cost model for the entire testing process.
The genesis of the model is illustrated in Figure 4. There was, however,
no quantitative data made available with which to evaluate the parameters

of Manley's or any other suggested models of the testing process.

3.3.1.1.13 Verification and validation. Cne of the major contrib-
uters to testing costs in software development is verification and validation
(V&V). A major cost consideration in verification and validation is
whether or not it is performed by an independent o;ganizatiGn. More and
more large software development projects are utilizing independent V&V;
one of the reasons for this is to improve the quality of the product.
Independent V&V will increase development costs, but cost benefits are
likely to be obtained over the life cycle. There is no available
quantitative data on how much software cost is increased with independent
V&V, but a factor in some use at Aeronautical Systems Division (ASD) is

that it increases total software development costs by 20 percent.
B

3.3.1.1.14 Transportability requirements. These requirements are
not normally sbecified in the performance specifications; however, in
the event a purchaser subsequently desires to have the flexibility of
moving code due to an anticipated change of CPUs over the life cycle, or

the possible transfer of code to other software programs, transportability

39

o ———— Nt ot o

RELATIVE

COST OF

RELIABLE

COMPUTER

SOFTWARE

0
TOTALLY
UNRELIABLE
Figure 4.

SOFTWARE CERTIFICATION/FAULT TOLERANCE

EXTENSIVE TESTING/INDEPENDENT VERIFICATION & VALIDATION

FORMAL TEST PROGRAM

SOFTWARE TESTING BY PROGRAMMER

100
PERFECTLY
RELIABLE

COMPUTER SOFTWARE RELIABILITY

Software reliability economic considerations
(as proposed by Manley [32])

40

requirements should be delineated to the maximum extent possible. The
degree to which the purchaser will be able to control transportability is
mainly a function of the language requiréments established. Most of the
cost impacts of language requirements were discussed previously; however,
thev are discussed here in terms of their effect on transportability.

The major elements affecting transportability are:

(1) the type of language chosen, HOL or MOL;

(2) the number of target machines for which a specific language !
compiler is available;

(3) the number of people trained in the language, which is
partially related to the above element;

(4) the degree of standardization in the compiler chosen, for
the language selected; and ST

(5) whether the compiler chosen allows direct assembler language
coding for the target machine of the compiler.

The element having the major impact is Item (1). Items (2) and (3)
depend on individual cases, such as the availability of trained personnel
and a compiler for the machine into which the code is to be transported.
Thus, in a general sense, FORTRAN IV is certainly much more transportable
than ALGOL 60. With regard to Item (4), computer vendors have a peculiar
penchant for adding non-standard features to standard languages to make
their version of the language more flexible. As the number of non-standard
features increase, the less transportable the source code becomes. Rela-
tive to Item (5), any compiler that allows the programmer to conveniently

enter assembler code is inherently less transportable.

Transportability is a cost that should be considered if there is a
possibility of changing CPUs over the life cycle or if transfers of code
to other software programs are anticipated. With'a weapons system life
cycle of about 10 years and an average CPU life of about 6 years, this
could be a serious consideration. Another facet of transportability is

the development cost tradeoff between standardization and flexibility.

41

If one is required to utilize standard Versions of languages, this

would probably result in the writing of more code than if one could

o d—

employ non-standard features. Quantitative data to measure the magni-

tude of this impact was not available for this study. =

i it

st b i

3.3.1.1.15 Maintenance requirements. Several factors discussed &

y Kb A e

previously have an important impact on maintenance costs. Most of these
factors, which are tacit impositions of maintenance requirements, have
an adverse impact on development costs. The exception is imposing the
use of HOL languages. Other factors not discussed previously, which are
maintenance requirements, have an impact on development cost. Most of

these are in the area of documentation, such as:

e requirements for developing run sheets for the programs,

® requirements for developing recovery procedures in the
event of software or hardware failure, and

e development of an Integrated Logistics Support (ILS) plan
for maintaining the software.

The degree to which items of this nature are implemented would have an
adverse impact on development cost, but a beneficial effect on life- '
cycle costs. No quantitative data to measure the magnitude of this R

impact was available for this study.

3.3.1.2 Task identification. The adequacy of the definitions for
the tasks to be performed during software develo}ment, such as the creation
of algorithms or definition of data base elements, could have an impact on
costs, However, neither qualitative or guantitative information was

available to investigate the impact of fact»ors from this area.

3.3.1.3 Proposal preparation time. Neither qualitative nor quanti-
tative information was available to investigate the impact of factors
from this area.
i
3.3.1.4 Program management. Since so.tware development i5 mostly a

labor intensive effort utilizing to a large degree the creative talents

of personnel, program management by the purchaser has to have a significant
impact on software cost and cost estimates. It is difficult to delineate
what management factors affect these costs and cost estimates, and even more
difficult to estimate the quantitative impact of the factors. Some factors
have been investigated. The selection of each factor was primarily based on
the amount of qualitative and quantitative information that was available.
By far the most important, relative to cost impact, is the time period allo- I8

cated to the software development.

3.3.1.4.1 Development schedule. An adequate amount of quantitative data
was not available to analyze the cost impact of the schedule imposed on the
developer by the purchaser. Both Brooks, [22], in his classical "The Mythi-
cal Man-Month" article, and Aron, [6], have investigated this impact in a
pseudo—-quantitative manner. The gist of both of these investigations is that
men and months cannot be interchanged freely. Both Brooks and Aron imply
that schedule is one of the truly important development cost factors. The
available guantitative data does, however, enable one to investigate the
relationship between size and development time. In addition, there is quan-
titative data with which to investigate the distribution of resources over

the schedule.

3.3.1.4.1.1 Development time. Figure 5 illustrates the relationship
between average development time and program size based on historical data
in the SDC Phase II1 study [(132]). The curve was developed from the average
development times in the historical data; however, the curve is prcobably
indicative of the estimated minimal development time required because it is
usually planned that software development be campleted within a specific
time frame dictated by other considerations. The amount of constraint
placed upon the development by specifying the time is not known. It is
probable that more time would be required for optimal development, espe-
cially for large development programs. Preliminary results of a study by

DAI indicate that the average time should be extended for programs with

43

ooolL

006

008

el i e

J03ewWT3}sa awry JuawdoTaA89pP 2I1eM3IJOS G 2Inbtg

I
SNOILONYLISNI 123r90 40 438NNN

0oL 009 00s 1[0} 7 00€ 00¢ 00l

-

1 Ll I I af- T |

hwm.:vmmw + GZ'66 &
1000L &

a

0
oL
0c
a
(SHLNOW)
JWIL
1IN3IWdOT13A3A
o€
ov

0S

44

L ———— A —————————— e .\ ‘

greater than 20,000 source instructions, and shortened for programs with

less than 20,000 source instructions.

Although both Brooks and Aron expect a significant cost impact for
deviation from an optimum schedule, there is no quantitative data with

which to measure this impact.

3.3.1.4.1.2 - Time-phased distribution of resources over the development
time. Aron, (6], and Putnam, in his discussion of the macro-estimating
methodology in the ASD Comptroller Automation Study, [1], have postulated
the distribution of resources over development to be similar to the curve
in Figure 6. Aron's is based on his experience in observing several IBM
software developments, and Putnam's 1is based on analytical fits to a
number of Army ADP developments. Devenny's investigation of several ESD
software developments, [40], indicates that funding profiles are essentially
flat (i.e., level funding), rejecting Aron's and Putnam's hypothesis. Aron,
however, indicates that the distributiaon will flatten out toward level fund-

ing with the imposition of Modern Programming.

Putnam has structured his results in the form of an analytical model,
which requires the user to indicate the time required to reach peak re-
source utilization and the total resources expected to be expendéd in
development. The model produces a time-phased distribution of the re-
source expenditures. There is no indication that this is a recommended
utilization of resources, it is just that historically resources were
distributed in this manner. However, Putnam does indicate that if the
development deviates more than 25 percent from the expected distribution,

the development could be in trouble.

An interesting point to Devenny's observations, [40], is that any
misestimation of cost is directly reflected in the schedule. For example,

if one initially underestimates the cost by a factor of 2, it will take

approximately twice as long to complete the development as original.iy

([T] weu3ang pue [9] uOIY I2d) (SUOTIONIISUT
309lqo 000‘00T ~) j09loxd sbxeT-umtpau e
I03F $82INOSaI JO UOTINATIAISTP pajewrisd °9 aanbrg

o

SHINOW
9t GE ¢t h ZZ LZ 0Z 6L 8L £1L 9L GL vL €L 2L LI oL 6 8 L 9 § ¥ g ¢ LG i T E .88
l ——r——
\ o — 3
: v
| ‘
ZL
[a9t
oz
3 ve
- 3714034 O
8z s
(A
oE
ov
F
3avHOd4dN ANV 1831 1831 oN83a | 3000 |N9IsS3a NOI1S3a NOIS30 NOILINI430 NOILYTINWHO4
JONVNILNIVIN 'SNOILYHIJO W3ILSAS 1 39VIOVd] L1INN 1INN 1IND 3OVIOVd W31SAS 123royd 1430N0D
1831 IN3Wd0OT3A30 NOIS3Q

* NOILVINIW3ITdWI 1D3rOHd

ORI SR

estimated. Indeed, this seems to be the case with many ESD developments,

The cost estimate usually remains frozen, with level expenditure rates,
until total expenditures become close to the original estimate, then the
estimate is raised and expenditures continue at’the same rate until the
amended estimate is approached. This scenario is usually repeated until

the development is completed.

In summary, there is considerable data available regarding historical
relationships of program size to development time, and the distribution of
resources over the development time, but there is virtually no data on the
cost impact of deviating from these historical norms.

3.3.1.4.2 Purchaser experience. Analysis of data, in which purchaser
experience was quantified with a three-state variable:. none, limited, and
extensive, indicated that limited experience would decrease productivity
by 27 percent and extensive experience by 14 percent, and no experience
caused no effect. One could infer that if the purchaser has any experience,
he tends to exert control over the developer, perhaps limiting productivity.
On the other hand, a purchaser with no experience may tend to feel naive
about the process, and tﬁus not inhibit the de;eloper. Unfortunately, there
was no information available as to the quality of the product associated

with purchaser experience.

3.3.1.4.3 Number of management controls. The imposition of management
controls should have some impact on the development process, if not in the
area of cost, at least in the quality of the product delivered. The former
effect was investigated by analysis of data and showed no impact; however
there is no quantitative data available relative to the latter. From 11
management controls identified in a questionnaire, responders were asked
to indicate the number of controls that were implemented during development.
The hypothesis tested was, "The imposition of management controls increases
software development productivity." There was virtually no correlation

between the number of management controls imposed and productivity.

Nothing, however, could be said about quality of the delivered product.
Even if there is no direct development cost benefit to the imposition of ' 1
management controls there would be a life-cycle benefit if the quality of

the received product is enhanced.

3.3.1.4.4 Communications. One would expect the effectiveness with
which the purchaser communicates with the developer to be an important
cost factor. There was, however, no quantitative data available with

which to assess the impact of this factor.

3.3.1.4.5 Planning for system growth. In a number of past develop-
ments, software quickly outstripped the capacity of the initially speci-
fied hardware. This usually occurred because requirements were increased
or changed during development, and because of the tendency to under-
estimate the size of the required software. The worst impact would be
in a situation where the entire development is in assembler, and it was
suddenly determined that the target CPU, configured with its maximum
possible memory and all available firmware, could not accomplish the
stated requirements, thus requiring a change to a CPU with a different
architecture. In this case, the entire software program package would
have to be redesigned and recoded. At the other extreme, the minimum
impact would occur in the case where growth could be accommodated simply
by increasing the amount of memory in the CPU originally specified. The
ability to accommodate growth is obviously impacted by language require-
ments and transportability requirements, as discussed earlier. Developing
a management plan to accommodate growth involves a comparatively small
cost. However, if growth occurs and no plan exists, the impact on soft-

ware development cost could be appreciable.

3.3.1.5 Development environment. The environment in which the de-
veloper is forced to work has a significant impact on software development.

Part of this environment is created by the developer, but it is a

48

G L

responsibility of the purchaser to ensure that a productive environment
is created and maintained for software development. As an example,
major problems that could occur with secondary resources might be the
unavailability of machine time or publications support at appropriate
times. Another major problem might be the amount and quality of support
software available to the developer. Quantitative data was available
for a number of factors from this area which permitted measurement of

their impact on cost; others had to be treated qualitatively.

3.3.1.5.1 Average turnaround time. This factor relates to the
availability of machine resources to the programmer; quantitative in-
formation was available for the analysis of its impact. Turnaround time
is the amount of time required for a programmer to receive his results
once he submits a run to a computer facility. The factor generally
only has significance in a batch environment. The turnaround times
reported in the data were divided into four categories: 1less than
2 hours, 2 to 11 hours, 12 to 24 hours, and greater than 24 hours. Analy-
sis produced a range of effects on productivity of 45 percent for the four
cases. The least impact occurred with turnaround times of 12 to 24
hours. The greatest impacts occurred with turnaround times of less than
2 hours, followed by turnaround times of greater than 24 hours. Thus,
both too little or too much computer availability appcar to be counter-
productive. Based on this analysis the optimum is to provide programmers

with computer services, i.e., turnaround, twice a day.

3.3.1.5.2 Time sharing versus batch. Available quantitative data
seems to indicate time sharing is more productive than batch processing
by about 20 percent. Independent results by Sackman, as cited by

Boehm, [16], produced an almost identical answer.

3.3.1.5.3 Develop<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>